PEMANFAATAN ENERGI ANGIN COOLING TOWER SEBAGAI SUMBER ENERGI ALTERNATIF DI AREA PAINTING PT ASTRA DAIHATSU MOTOR KARAWANG

Authors

DOI:

https://doi.org/10.52453/t.v15i1.369

Keywords:

global energi crisis, utilization of wind energy, cooling tower, HAWT wind turbine, PMSG generator

Abstract

The global energy crisis which is based on fossil-based energy security encourages efforts to make a just and sustainable energy transition. This study aims to explore and test the potential utilization of wind energy sources from Cooling Towers as an efficient and sustainable alternative energy source. Cooling Tower at PT Astra Daihatsu Motor is the focus of research because this company has implemented the Sustainable Development Goal's (SDG's) program which is in line with the goal of contributing to handling global problems, including in clean energy and tackling climate change. Wind energy from the Cooling Tower is analyzed using the wind power formula which produces a power of 1,373 watts at an average wind speed of 9 m/s from 1 hole in the Cooling Tower. To optimize its utilization, a HAWT (Horizontal Axis Wind Turbine) type wind turbine is installed in the Cooling Tower chimney. This turbine produces 425 watts of wind power with a power coefficient of 0.43 and a tip speed ratio of 9.7. PMSG (Permanent Magnet Synchronous Generator) type generator was chosen as a converter of kinetic energy into electrical energy. The implementation results show that the wind turbine can only produce 79.52 watts with a generator efficiency of 18.7% of the received wind resources. This research obtained electricity cost savings of Rp. 660,660/year and reduce TCO2 emissions by 0,416 TCO2/tahun. Utilization of wind energy sources from Cooling Towers shows potential as a sustainable alternative energy source. In addition to reducing dependence on fossil energy sources, the use of wind energy also has a positive impact on the environment by reducing greenhouse gas emissions.

References

. Adam, M., Harahap, P., & Nasution, M. R. (2019). Analisa Pengaruh Perubahan Kecepatan Angin Pada Pembangkit Listrik Tenaga Angin (PLTA) Terhadap Daya Yang Dihasilkan Generator Dc. RELE (Rekayasa Elektrikal Dan Energi) : Jurnal Teknik Elektro, 2(1), 30–36. https://doi.org/10.30596/rele.v2i1.3648

. Adi Sayoga, I. M., Wiratama, I. K., Mara, M., & Catur, A. D. (2014). PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt. Dinamika Teknik Mesin, 4(2), 103–109. https://doi.org/10.29303/d.v4i2.59

. Hidayatullah, N. A., & Ningrum, H. N. K. (2017). Optimalisasi Daya Pembangkit Listrik Tenaga Angin Turbin Sumbu Horizontal dengan Menggunakan Metode Maximum Power Point Tracker. JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering), 1(1). https://doi.org/10.32486/jeecae.v1i1.5

. Huda, R. M., & Rizianiza, I. (2017). Effect of Tip Speed Ratio on Power Generated Prototype of Horizontal Axis Wind Turbine with Three Blades. 126–129.

. Jain, A., Shankar, S., & Vanitha, V. (2018). Power generation using Permanent Magnet Synchronous Generator (PMSG) based variable speed wind energy conversion system (WECS): An overview. Journal of Green Engineering, 7(4), 477–504. https://doi.org/10.13052/jge1904-4720.742

. Lubis, Z. (2018). Metode Baru Merancang Sistem Mekanis Kincir Angin Pembangkit Listrik Tenaga Angin. Journal of Electrical Technology, 3(3).

. Mahmuddin, F., Klara, S., Pawara, M. U., Anshar, D., & Akhir, Y. (2018). Studi Performa Vertical-Axis Wind Turbine (Vawt) Sebagai Pembangkit Energi Listrik Pada Floating Platform. September, 28–29.

. Muhammad, I. (2018). Pembuatan sistem pembangkit listrik tenaga angin berkapasitas 100 watt. Teknik Elektro.

. Nurdiyanto, A. (2020). Rancang Bangun Prototype Pembangkit Listrik Tenaga Angin Menggunakan Turbin Angin Savonius. Jurnal Teknik Elektro, 09(01), 711–717. https://ejournal.unesa.ac.id/index.php/JTE/article/download/29892/27395

. Rahman, F., Nurjannah, I., Sari, H. N., Christian, A., & Hidayat, M. K. (2023). Optimalisasi Metode Blade Turbin Angin Sumbu Horizontal. Otopro, 18(2), 59–64. https://doi.org/10.26740/otopro.v18n2.p59-64

. Ridwan, & Latief, A. (2019). Pengaruh Jumlah Sudu Pada Turbin Angin Sumbu Vertikal Terhadap Distribusi Kecepatan Dan Tekanan. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(2), 141–151. https://doi.org/10.35760/tr.2019.v24i2.2392

. Sidqi, M. D., Zulfikar, Z., & Radiah, R. (2022). Rancang Bangun Pembangkit Listrik Tenaga Angin Sumbu Horizontal Menggunkan Pipa Pvc. Jurnal TEKTRO, 06(01). http://e-jurnal.pnl.ac.id/TEKTRO/article/view/3225

. Suprapto, M. (2016). Analisa Turbin Angin Sumbu Vertikal Dengan 4, 6, Dan 8 Sudu. Teknik Mesin UNISKA, 02(01), 52–57.

. Syamsuarnis, S., & Candra, O. (2020). Pembangkit Listrik Tenaga Angin sebagai Energi Listrik Alternatif bagi Masyarakat Nelayan Muaro Ganting Kelurahan Parupuk Kecamatan Koto Tangah. JTEV (Jurnal Teknik Elektro Dan Vokasional), 6(2). https://doi.org/10.24036/jtev.v6i2.108487

. https://dataindonesia.id/sektor-riil/detail/bauran-energi-indonesia-masih-didominasi-batu-bara-pada-2022

. https://www.bmkg.go.id/iklim/?p=ekstrem-perubahan-iklim

. https://sdgs.bappenas.go.id/dashboard/

. Departemen Energi dan Sumber Daya Mineral, Pusat Data dan Informasi Sumber Daya Mineral dan Energi, 2008. Handbook of Energy & Economic Statistic of Indonesia, Jakarta.

Published

2024-06-26

How to Cite

Nugraha, A. A., Lukman Wijanarno, Ajib Rosadi, & Hadiyanto. (2024). PEMANFAATAN ENERGI ANGIN COOLING TOWER SEBAGAI SUMBER ENERGI ALTERNATIF DI AREA PAINTING PT ASTRA DAIHATSU MOTOR KARAWANG. Technologic, 15(1). https://doi.org/10.52453/t.v15i1.369

Issue

Section

Table of Contents