

p-ISSN 2085-8507 e-ISSN 2722-3280

TECHNOLOGIC

VOLUME 15 NOMOR 1 | JUNI 2024

POLITEKNIK ASTRA

Jl. Gaya Motor Raya No. 8 Sunter II Jakarta Utara 14330 Telp. 021 651 9555, Fax. 021 651 9821 www.polytechnic.astra.ac.id Email: editor.technologic@polytechnic.astra.ac.id

DEWAN REDAKSI

Technologic

Ketua Editor:

Dr. Setia Abikusna, S.T., M.T., IPM., ASEAN Eng. (Politeknik Astra)

Dewan Editor:

(Politeknik Astra) Lin Prasetyani, S.T., M.T.

Rida Indah Fariani, S.Si., M.T.I (Politeknik Astra)

Yohanes Tri Joko Wibowo, S.T., M.T. (Politeknik Astra)

Dr. Eng. Tresna Dewi, S.T., M.Eng (Politeknik Negeri Sriwijaya)

Mitra Bestari:

Abdi Suryadinata Telaga, Ph.D. (Politeknik Astra)

(Universitas Negeri Jakarta) Dr. Eng. Agung Premono, S.T., M.T.

Harki Apri Yanto, Ph.D. (Politeknik Astra)

Dr. Ir. Lukas, MAI, CISA, IPM (Universitas Katolik Indonesia Atma Jaya)

Prof. Dr. Ir. Muhammad Mukhlisin MT., IPM. (Politeknik Negeri Semarang)

Dr. Ir. Sirajuddin, ST., MT., IPU (Universitas Sultan Ageng Tirtayasa)

Dr. Eng. Syahril Ardi, S.T., M.T. (Politeknik Astra)

Dr. Eng. Tresna Dewi, S.T., M.Eng. (Politeknik Negeri Sriwijaya)

Asisten Editor:

Asri Aisyah, A.md. (Politeknik Astra)

Kristina Hutajulu, S.Kom. (Politeknik Astra)

Kantor Editor:

Politeknik Astra

Jl. Gaya Motor Raya No. 8 Sunter II Jakarta Utara 14330

Telp. 021 651 9555, Fax. 021 651 9821

www.polytechnic.astra.ac.id

Email: editor.technologic@ polytechnic.astra.ac.id

EDITORIAL

Pembaca yang budiman,

Puji syukur kita dapat berjumpa kembali dengan Technologic Volume 15 No. 1, Edisi Juni 2024.

Pembaca, Jurnal Technologic Edisi Juni 2024 kali ini berisi 12 manuskrip.

Atas nama Redaksi dan Editor, kami do'akan semoga dalam keadaan sehat selalu, dan semoga di tahun 2024 semakin sukses dan berjaya, tak lupa kami haturkan terima kasih atas kepercayaan para peneliti dan pembaca, serta selamat menikmati dan mengambil manfaat dari terbitan Jurnal Technologic kali ini.

Perlu kami sampaikan untuk meningkatkan kualitas jurnal, Jurnal Technologic sudah menggunakan OJS versi 3, dalam rangka persiapan akreditasi jurnal, mohon dukungan dari para peneliti dan pembaca agar persiapan tersebut lancar dan mendapat hasil yang maksimal.

Selamat membaca!

DAFTAR ISI

,	1
Yohanes Climacus Sutama, Fauzan Arya Ramadani, Ade Susilo, Afitro Adam Nugraha, Andreas Edi Widyartono	
MENINGKATKAN EFEKTIVITAS PROSES <i>PURGING ENGINE DIESEL</i> MENGGUNAKAN <i>DIESEL PURGING KIT</i> BERBASIS ARDUINO UNO DI PT ASTRA INTERNATIONAL ISUZU <i>SALES OPERATION</i> CABANG CIPUTAT	7
Prio Sembodo, Ajib Rosadi, Busrah , Afitro Adam Nugraha, Rusdi Febriyanto	
ALTERNATIF DESAIN STRUKTUR BAJA BENTANG 24 METER STRUKTUR BANGUNAN 3 LANTAI	15
Sofian Arissaputra, Ananda Aprillia	
RANCANG BANGUN ALAT SCALING PORTABEL UNTUK MENURUNKAN WAKTU DOWNTIME PADA DIES TIPE M DI PT. GZB Ferdhika Ariansyah, Nursim	22
REKAYASA SISTEM PEMANTAU LEVEL SUSPENSI BELAKANG PADA UNIT KOMATSU DUMP TRUCK HD785-7 DI PT XYZ SITE BATULICIN Elroy FKP Tarigan, Teguh Ramadhan, Nur Rofiq Syuhada	28
OPTIMALISASI PROSES DENGAN METODE COMMONIZE BOOTH B UNTUK MATERIAL X** TW TONE KANSAI PAINT di LINE TOPCOAT ASSEMBLY PLANT Akmal Mukhtariz, Andreas Edi Widyartono, Yohanes P Agung Purwoko, Mahardhika Amri, Rusdi Febriyanto	<i>'0</i> 35
PEMANFAATAN ENERGI ANGIN COOLING TOWER SEBAGAI SUMBER ENERGI ALTERNATIF DI AREA PAINTING PT ASTRA DAIHATSU MOTOR KARAWANG Lukman Wijanarno, Ajib Rosadi, Hadiyanto, Afitro Adam Nugraha	42
RANCANG BANGUN UNIVERSAL TOOL BIT UNTUK PENGENCANGAN MUR PENGUNCI TIE ROE	D 49
Yusak Faqih Wibowo, Yohanes C. Sutama, dan Ajib Rosadi, Afitro Adam Nugraha	• •
ANALISA POMPA COOLING WATER SUPPLY UNTUK MENGHASILKAN STANDAR POMPA YANG EFISIEN DI COOLING TOWER 4 PT EFG	G 56
Fendi Ridho Febrianto, Yohanes P Agung Purwoko, Ade Susilo, Rusdi Febriyanto	-
PEMBUATAN JIG POSITIONING UNTUK MENGURANGI <i>CYCLE TIME</i> PROSES <i>ASSY UNIT</i> PEMASANGAN <i>NUT SPRING</i> M5 KE <i>LIGHT ASSY FRONT COMB</i> PADA <i>STATION</i> 456 <i>TYPE</i> MU20 DI PT.XYZ	6 64

Nensi Yuselin, Muhamad Usman

Juni 2024

MENURUNKAN CYCLE TIME STOCK OPNAME IMPORT PARTS DENGAN PATTERN SUPPLY FORM BERBASIS WEBSITE DI ASSEMBLING K-LINE 5 PT ASTRA DAIHATSU MOTOR 71

Rudi Kiswanto, Yohanes Climacus Sutama, Afitro Adam Nugraha, dan Pramastya Widya Naluri

TINJAUAN PERBANDINGAN METODE PERHITUNGAN VOLUME TIMBUNAN DI PROYEK SIERRA INTERCULTURAL SCHOOL SECARA MANUAL DAN FOTOGRAMETRI 79

Merdy Evalina Silaban , Muhammad Fajri Eka Prakasa

TINJAUAN PERBANDINGAN METODE PERHITUNGAN VOLUME TIMBUNAN DI PROYEK SIERRA INTERCULTURAL SCHOOL SECARA MANUAL DAN **FOTOGRAMETRI**

Merdy Evalina Silaban*, Muhammad Fajri Eka Prakasa

Teknologi Konstruksi Bangunan Gedung, Jurusan Teknik Sipil dan Infrastruktur, Politeknik Astra, Jalan Gaharu Blok F-3 Delta Silicon 2 Lippo Cikarang, Kel. Cibatu, Kec. Cikarang Selatan, Bekasi, Jawa Barat, 17530, Indonesia E-mail: merdy.silaban@polytechnic.astra.ac.id*

Abstract -- The calculation of earthwork volumes in construction projects significantly influences accuracy, efficiency, and project costs. Therefore, comparing manual methods with photogrammetry in earthwork volume calculation is imperative. Manual methods rely on direct physical measurements, whereas photogrammetry utilizes aerial image processing captured by air cameras or drones. This study compares volume calculation methods on the Sierra Intercultural School Project, contrasting manual and photogrammetry via AutoCAD Civil 3D, and Microsoft Excel for comparison against field measurements. Findings reveal manual method volume at 7257.13 m³ and photogrammetry at 8095.88 m³, with a volume difference of 838.75 m³ and cost difference of Rp. 140,275,132. Consequently, while photogrammetry may offer more accurate volumetric data, significant cost increases warrant consideration. In this context, selecting earthwork volume calculation methods must balance accuracy, cost efficiency, and project-specific needs, considering available time, resources, and environmental requirements holistically for optimal construction project implementation.

Keywords: Photogrammetry, Manual Method, Earthwork Volume

Abstrak -- Perhitungan volume timbunan dalam industri konstruksi merupakan tahapan penting yang memengaruhi keseluruhan proyek. Metode yang digunakan dalam menghitung volume timbunan memiliki dampak signifikan terhadap akurasi, efisiensi, dan biaya proyek. Oleh karena itu, perbandingan antara metode manual dan fotogrametri dalam perhitungan volume timbunan menjadi hal yang penting untuk dieksplorasi. Metode manual mengandalkan pengukuran fisik langsung pada timbunan, sedangkan metode fotogrametri menggunakan pemrosesan citra udara yang diambil menggunakan kamera udara atau drone. Penelitian dilakukan pada Proyek Sierra Intercultural School dengan membandingkan volume menggunakan metode manual, fotogrametri pada AutoCAD Civil 3D, dan perhitungan menggunakan Microsoft Excel sebagai pembanding, yang kemudian dibandingkan dengan hasil volume timbunan di lapangan. Hasil penelitian menunjukkan volume timbunan dengan metode manual sebanyak 7257,13 m3 sedangkan dengan metode fotogrametri sebanyak 8095,88. Berdasarkan data tersebut terdapat selisih volume sebanyak 838,75 m³ dengan selisih biaya Rp. 140.275.132. Dengan demikian, sementara metode fotogrametri mungkin menghasilkan data yang lebih akurat secara volumetrik, peningkatan biaya yang signifikan harus dipertimbangkan. Dalam konteks ini, pemilihan metode perhitungan volume timbunan harus mempertimbangkan keseimbangan antara akurasi, efisiensi biaya, dan kebutuhan proyek yang spesifik. Faktor lain seperti waktu yang tersedia, sumber daya, dan kebutuhan lingkungan juga harus dipertimbangkan secara holistik untuk memastikan keputusan yang optimal dalam pelaksanaan proyek konstruksi.

Kata Kunci: Fotogrametri, Metode Manual, Volume Timbunan

I. PENDAHULUAN

1.1 Latar Belakang

Pada judul penelitian "Tinjauan Perbandingan Metode Perhitungan Volume Timbunan di Proyek Sierra Intercultural School Secara Manual dan Fotogrametri," terdapat beberapa kesenjangan penelitian yang dapat diidentifikasi. Pertama, meskipun metode perhitungan volume timbunan telah digunakan secara luas dalam industri konstruksi, belum ada studi yang secara langsung membandingkan akurasi dan keandalan metode perhitungan manual dengan fotogrametri dalam konteks proyek konstruksi tertentu seperti Sierra Intercultural School. Hal ini diperlukan untuk memperoleh pemahaman yang lebih mendalam tentang efektivitas kedua metode tersebut dalam konteks praktis proyek konstruksi. Selain itu, ketersediaan data pembanding yang terbatas mungkin juga menjadi kendala dalam literatur yang membandingkan metode perhitungan manual dan fotogrametri [13]. Studi-studi yang ada mungkin tidak cukup representatif atau tidak mempertimbangkan faktor-faktor kunci seperti topografi, jenis material

timbunan, atau teknologi yang digunakan. Lebih lanjut, ada juga kesenjangan dalam pemahaman terhadap efisiensi dan biaya penggunaan fotogrametri dalam perhitungan volume timbunan. Meskipun fotogrametri dianggap dapat meningkatkan efisiensi dalam proses perhitungan, masih belum ada pemahaman yang memadai tentang dampak biaya dan waktu implementasi dari perspektif praktis proyek konstruksi seperti yang diamati di Sierra Intercultural School. Kajian lebih lanjut diperlukan untuk mengevaluasi secara komprehensif keuntungan dan tantangan penggunaan teknologi fotogrametri dalam lingkungan proyek konstruksi yang sebenarnya. Terakhir, penggunaan fotogrametri dalam konteks proyek konstruksi di daerah tertentu seperti Sierra Intercultural School mungkin belum sepenuhnya dieksplorasi atau diadopsi. Oleh karena itu, ada kesenjangan dalam literatur terkait dengan potensi dan tantangan penggunaan teknologi ini dalam lingkungan proyek konstruksi spesifik ini. Penelitian yang mendalam dan terfokus diperlukan untuk menyelidiki secara lebih rinci bagaimana fotogrametri dapat diterapkan secara efektif dan efisien dalam memenuhi kebutuhan pengukuran volume timbunan dalam proyek konstruksi seperti yang diamati di Sierra Intercultural School. Penelitian ini bertujuan untuk membandingkan efektivitas dan akurasi kedua metode tersebut, serta mengidentifikasi kelebihan dan kelemahan masing-masing. Penelitian ini dilakukan pada proyek PT. Acset Indonusa Tbk yang dipercaya kontraktor untuk mengerjakan pekerjaan proyek Sierra Intercultural School yang berlokasi di Kecamatan Cakung, Kota Jakarta Timur DKI Jakarta.

1.2 Tujuan Penelitian

Adapun tujuan pada penelitian ini adalah sebagai berikut:

- 1. Mampu menjelaskan proses pengambilan data pada metode manual dan fotogrametri.
- 2. Mampu menjelaskan proses pengolahan data pada metode manual dan fotogrametri.
- 3. Mampu membandingkan volume timbunan yang dihasilkan dari metode manual dan fotogrametri.
- 4. Mengetahui akuransi penggunaan fotogrametri untuk penerapan skala industry.

1.3 Lokasi Penelitian

Lokasi penelitian ini dilakukan di salah satu proyek ACSET Indonusa. Proyek ini beralamatkan di Kelurahan Cakung Timur, Kecamatan Cakung, Kota

Jakarta Timur. Lokasi penelitian bisa ditunjukan pada gambar 1 sebagai berikut:

Gambar 1. Lokasi Penelitian

1.4 Landasan Teori

1.4.1 Galian dan Timbunan

Ilmu ukur tanah adalah cabang ilmu yang fokus pada pengukuran dan pemetaan lahan, yang melibatkan pengukuran jarak, elevasi, dan sudut untuk menciptakan representasi grafis dari permukaan tanah. Galian dan timbunan adalah elemen penting dalam ilmu ukur tanah dan digunakan untuk menghasilkan peta topografi, memantau perubahan lahan, serta perencanaan dan pengembangan lahan. Berikut adalah landasan teori yang berkaitan dengan galian dan timbunan dalam ilmu ukur tanah, Konsep Dasar Ilmu Ukur Tanah:

- a. Pengukuran Geodetik: Ilmu ukur tanah melibatkan penggunaan teknik pengukuran geodetik untuk mengukur jarak, sudut, dan elevasi. Pengukuran ini dilakukan menggunakan instrumen seperti total station, GPS (Global Positioning System), dan alatalat pengukuran lainnya.
- b. Peran Galian dan Timbunan dalam Ilmu Ukur Tanah: Pemetaan Topografi: Galian dan timbunan sering digunakan dalam pemetaan topografi untuk merekam perbedaan elevasi dan fitur-fitur permukaan tanah. Ini dapat mencakup lembah, bukit, saluran, jalan raya, dan lainnya.
- c. Metode Pengukuran Volume Galian dan Timbunan:
 - Metode Cross-Sectional: Dalam metode ini, penampang melintang sepanjang galian atau timbunan dibuat pada interval tertentu, dan volume dihitung dengan mengukur perbedaan elevasi.
- d. Metode Grid (Grid Survey): Metode ini melibatkan pembuatan jaringan grid di atas permukaan tanah, dan perubahan elevasi diukur pada titik-titik dalam grid untuk menghitung volume.
- e. Penggunaan Alat Ukur: Total Station: Total station adalah alat yang digunakan untuk mengukur sudut horizontal dan vertikal serta jarak dalam pemetaan topografi.

Politeknik Astra

- f. GPS (Global Positioning System): GPS digunakan untuk menentukan koordinat geografis dan elevasi pada permukaan bumi. Ini sangat berguna dalam pemetaan daerah yang luas.
- g. Perencanaan Konstruksi dan Pengelolaan Sumber Daya Alam: Ilmu ukur tanah, termasuk perhitungan volume galian dan timbunan, adalah instrumen penting dalam perencanaan konstruksi dan pengelolaan sumber daya alam. Ini digunakan untuk menilai dampak lingkungan, merencanakan perumahan, jalan raya, bendungan, dan lainnya.
- h. Koreksi Perubahan Elevasi: Perubahan elevasi yang disebabkan oleh faktor-faktor seperti deformasi tanah, erosi, atau sedimentasi harus dipertimbangkan dalam perhitungan volume galian dan timbunan.
- i. Peraturan dan Standar: Ilmu ukur tanah harus mematuhi peraturan dan standar yang relevan, seperti peraturan pemetaan tanah, spesifikasi pemeliharaan jalan raya, atau standar lingkungan.
- j. Teknologi Terkini: Perkembangan teknologi seperti pemetaan digital dan fotogrametri telah mengubah cara galian dan timbunan diukur dan dimodelkan, yang memungkinkan pengambilan data yang lebih akurat dan efisien.

1.4.2 Pengukuran Manual

Pengukuran kontur merupakan hal yang penting dalam perencanaan dan pembangunan. Tidak hanya untuk menentukan perencanaan konstruksi bangunan, kontur juga dapat digunakan untuk perencanaan evakuasi, perencanaan kota, dan tata ruang lainnya. Kontur juga menjadi poin penting dalam arahan penggunaan lahan. Bahkan data kontur dapat diturunkan menjadi bermacam-macam informasi yang sangat bermanfaat seperti pembuatan pemodelan DAS dan lain sebagainya [5].

Terestris adalah paling yang umum diselenggarakan dikarenakan si pengukur berada (bersentuhan) langsung di lapangan. Metode ini digunakan untuk menghasilkan topografi dan sebagai salah satu syarat teknis dalam suatu perencanaan rekayasa sipil [6]. Terestris juga merupakan rangkaian pengukuran menggunakan alat ukur sudut, jarak dan beda tinggi di atas permukaan bumi sehingga diperoleh hubungan posisi suatu tempat terhadap tempat lainnya [5]. Metode terestris memiliki kekurangan dalam hal efektivitas dan efisiensi waktu dan tenaga yang dibutuhkan sehingga berdampak pada biaya yang harus dikeluarkan. Pemilihan metode pengukuran yang tepat harus disesuaikan dengan anggaran yang tersedia dan tingkat ketelitian yang dibutuhkan.

1.4.3 Pengukuran Fotogrametri

Fotogrametri merupakan seni, ilmu dalam memperoleh informasi yang terpercaya mengenai obyek-obyek dan lingkungan fisik, melalui proses perekaman, pengukuran dan penafsiran citra fotografik, yang dimana aspek-aspek geometric dari foto udara seperti sudut, jarak, koordinat, dan sebagainya merupakan faktor utama, cepatnya perkembangan dari teknologi dalam bidang survey dan pemetaan vaitu Unmanned Aerial Vehicle [12]. Untuk menggunakan metode fotogrametri ini, dibutuhkan alat yang biasa dikenal dengan Drone UAV (Unmmaned Aerial Vechile).

1.4.4 Drone / UAV (Unmmaned Aerial Vechile)

Drone adalah wahana yang dilengkapi sistem pengendali terbang melalui gelombang, navigasi presisi Ground Positioning System (GPS), dan elektronik kontrol penerbangan sehingga mampu terbang sesuai perencanaan terbang (autopilot). Drone ini memungkinkan untuk melakukan pelacakan posisi dan orientasi dari sensor yang di implementasikan dalam sistem lokal atau koordinat global [2].

Drone biasanya juga dilengkapi dengan peralatan kamera resolusi tinggi dapat melakukan pemotretan foto udara. Penggunaan drone menghasilkan gambar/citra dengan resolusi spasial yang besar, tidak terkendala awan, karena pengoperasiannya pada ketinggian di bawah awan melalui drone, skala kedetailan data menjadi sangat tinggi dan proses pengumpulan datanya menjadi lebih mudah [7].

Gambar 2. Ilustrasi Pengukuran Fotogrametri

1.4.5 Software Pengolahan Data

1.4.5.1 AutoCAD Civil 3D

AutoCad Civil 3D adalah perangkat lunak untuk desain dan dokumentasi proyek infrastruktur yang dikembangkan oleh Autodesk. Perangkat lunak AutoCAD Civil 3D V 2019 merupakan perangkat lunak sebagai bagian dari BIM (Building Information Modelling) yang menjawab tantangan perkembangan

jaman yaitu dapat menyelesaikan pekerjaan desain dan permodelan dengan cepat [1].

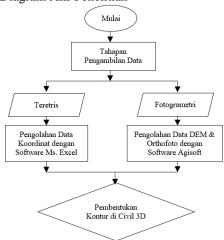
Pemodelan dengan AutoCAD Civil 3D dapat digunakan sebagai perangkat untuk analisis dan desain berbagai jenis proyek infrastruktur sipil, jalan raya, pengembangan lahan, jalan kereta api, bandara, dan bangunan air. AutoCAD Civil 3D membantu para infrastruktur sipil profesional meningkatkan penyelesaian proyek, analisa data dan proses yang lebih konsisten, dan merespons lebih cepat terhadap perubahan proyek, semua dalam lingkungan AutoCAD [1].

1.4.5.2 Agisoft Metashape

Software agisoft metashape digunakan untuk mengelola data foto udara yg didapat dari drone. Ada 3 tahap dalam pengolahan foto udara. Tahap pertama adalah proses image matching yang merupakan sebaah proses untuk mengidentifikasi titik-titik yang muncul pada foto. Proses ini bertujuan untuk menampakan foto udara berdasarkan akuisisi dan tipe pertampakannya serta menghasilkan sparse point clouds yang diperlukan dalam tahap pengolahan foto berikutnya.

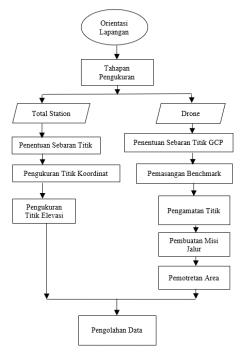
1.4.5.3 Perhitungan Volume dengan Software Civil

Perhitungan dengan menggunakan software civil 3D bisa kita lakukan dengan menggenerate perhitungan volume ke dalam bentuk file report. Selain itu kita juga dapat membuat ke dalam tabel secara langsung di autocad civil 3D lalu kita juga dapat menampilkan perhitungan volume. Beberapa hal yang harus kita miliki untuk membuat perhitungan volume Cut and Fill ini yaitu surface to surface.


II. METODOLOGI PENELITIAN

2.1 Metode Pembahasan

Metode pengumpulan data dalam penelitian ini terdiri dari dua pendekatan utama: metode manual dan fotogrametri. Metode manual melibatkan pengukuran fisik langsung pada timbunan. Dalam metode ini, data diambil dengan melakukan pengukuran langsung menggunakan alat pengukur seperti penggaris, pengukur jarak, atau alat lainnya. Sedangkan metode fotogrametri menggunakan pemrosesan citra udara yang diambil dari udara menggunakan kamera udara atau drone. Dalam metode ini, citra udara dari wilayah studi diambil dengan menggunakan alat seperti kamera udara atau drone, kemudian data citra tersebut diproses menggunakan perangkat lunak khusus untuk mendapatkan informasi tentang volume timbunan.


Perbandingan volume timbunan kemudian dilakukan dengan menggunakan kedua metode ini. Metode fotogrametri diterapkan menggunakan perangkat lunak AutoCAD Civil 3D, sementara metode manual digunakan dengan bantuan alat-alat pengukur konvensional. Selain itu, perhitungan menggunakan Microsoft Excel digunakan sebagai pembanding. Data yang dikumpulkan kemudian dianalisis untuk mengevaluasi akurasi, efisiensi, dan biaya kedua metode.

2.1.1 Diagram Alir Penelitian

Gambar 3. Ilustrasi Pengukuran Fotogrametri

2.1.2 Diagram Alir Pengolahan Data

Gambar 4. Ilustrasi Pengukuran Fotogrametri

Politeknik Astra

2.2 Alat Yang Digunakan

Peralatan yang dibutuhkan untuk menunjang penelitian ini antara lain sebagai berikut :

➤ Total station Sokkia CX102, dengan spesifikasi sebagai berikut:

a. Jangkauan : 03 - 500 m

b. Kapasitas data : 2 GB

c. Teknologi Laser :Redtech EDM Reflectorless (class1)

d. Ketahanan daya : 36 jam

e. Wireless : Bluetooth

: -20° s/d. 60° C f. Suhu Pemakaian

g. Berat : 5,6 kg

h. Dimensi : 348×191×181

Gambar 5. Total Station CX102

- 1. Perangkat lunak computer (software)
- a. DJI PILOT, perangkat lunak untuk pembuatan mission planning.
- b. AutoCAD Civil 3D 2023, perangkat lunak untuk penyajian perhitungan volume dari total station dan drone.
- c. Agisoft Metashape, perangkat lunak untuk penyajian data fotogrametry drone.
- Microsoft Office 2013, perangkat lunak untuk perhitungan terkait, penyajian, dan pelaporan hasil penelitian.

III. HASIL DAN PERANCANGAN

- 3.1 Hasil Pengukuran Manual
- 3.1.1 Ploting Koordinat Data Excel Total Station Tabel 1. Data Koordinat Pengukuran Total Station

No	Easting °	Northing°	Zenith°	Description
1	716406,4046	9318645,165	5,5674	Tanah

No	Easting°	Northing°	Zenith °	Description
2	716367,563	9318652,082	5,2041	Tanah
3	716345,4926	9318656,507	5,1088	Tanah
4	716383,6339	9318649,152	5,2742	Tanah
5	716358,6292	9318750,137	5,0852	Tanah
6	716422,7406	9318742,707	5,2867	Tanah
7	716372,3222	9318748,888	5,1269	Tanah

Tabel 2. Data Koordinat Pengukuran Total Station (Lanjutan)

	3 /						
No	Easting °	Northing °	Zenith °	Description			
8	716404,7308	9318744,456	5,050	Tanah			
9	716390,4247	9318746,247	5,1108	Tanah			
10	716354,7041	9318733,107	5,0509	Tanah			
11	716351,195	9318710,912	5,0528	Tanah			
12	716347,1879	9318684,251	4,7636	Tanah			
13	716406,7517	9318647,204	6,3039	Tanah			
14	716388,404	9318651,203	7,0181	Tanah			
15	716368,2393	9318654,658	6,8224	Tanah			
16	716345,9722	9318658,841	6,5784	Tanah			
17	716349,9416	9318683,867	6,5625	Tanah			
18	716411,5116	9318674,454	7,1053	Tanah			
19	716365,3522	9318684,405	6,7877	Tanah			
20	716394,4593	9318677,72	6,9276	Tanah			
21	6370,9708	9318700,829	6,8439	Tanah			
22	716396,2967	9318696,601	6,8128	Tanah			
23	716352,6739	9318703,119	6,7071	Tanah			
24	716414,4191	9318693,647	6,8116	Tanah			
25	716354,4705	9318717,403	6,7059	Tanah			
26	716417,4487	9318710,824	6,721	Tanah			


Politeknik Astra

No	Easting °	Northing °	Zenith °	Description
27	716370,3684	9318716,084	6,7513	Tanah
28	716393,4359	9318713,389	6,7883	Tanah
29	716373,2409	9318746,216	6,5804	Tanah
30	716395,981	9318742,821	6,6566	Tanah
31	716360,0139	9318748,605	6,4625	Tanah
32	716361,0399	9318747,443	6,553	Tanah
33	716422,6413	9318738,893	6,7284	Tanah

3.1.2 Hasil Pengukuran Fotogrametry

Tabel 3. Data Koordinat Pengukuran Total Station

No	Markers	Easting °	Northing°	Altitude
1	GCP 01	716398.4976	9318643.988	5,4186
2	GCP 02	716418.0478	9318747.234	5,2883
3	GCP 03	716346.8965	9318660.614	6,6493
4	GCP 04	716361.0399	9318747.443	6,553

Gambar 6. Hasil Import Koordinat GCP Software Agisof

3.1.2.1 Analisa Perhitungan Biaya

Volume Tanah

Rekapitulasi volume timbunan dari hasil pengukuran total station dan drone disajikan pada tabel 4 sebagai berikut:

Tabel 4. Nilai Volume Timbunan

No.	Area (m ²)	Volume Fill (m ³)
	Total St	ation
1	6388	7257,13
	Dron	ie
2	6387,72	8095,88

Berdasarkan data di lapangan, pekerjaan galian dan timbunan tanah di proyek Sierra masuk ke dalam pekerjaan ACSET. Volume timbunan tanah pada tabel menunjukan untuk hasil metode manual sebesar 7257,13 m3 untuk timbunan menggunakan alat total station. Sementara untuk hasil fotogrametry sebesar 8095,88 m³ untuk timbunan. Deviasi volume pada ke dua metode tersebut sebesar 838,75 m³ untuk timbunan.

Tabel 5. Perhitungan AHSP

No	Uraian	Satuan	Koefisien	Harga Satuan	Total Harga	
1	Pekerja	Jam	0,048	Rp26.400	Rp1.267	
2	Tanah Merah	m ³	1,35	Rp100.000	Rp135.000	
3	Solar Industri	Liter	0,066	Rp8.140	Rp537	
4	Bulldozer D65ESS-2	Jam	0,012	Rp305.000	Rp3.660	
5	Sheepfoot Ro BW211D- 40	Jam	0,02	Rp212.750	Rp4.255	
6	Vibro Roller BW211D-40	Jam	0,015	Rp175.000	Rp2.625	
7	Dump Truck	Jam	0,019	Rp175.000	Rp3.325	
Jumlal	Rp150.669					
PPN 1	Rp16.574					
Total I	Total Harga					

Berdasarkan AHSP pada tabel di atas, diperoleh harga per m³ pekerjaan tanah timbunan sebesar Rp.167.243 Maka total harga volume hasil pengukuran manual dan fotogrametri adalah sebagai berikut:

Tabel 6. Hasil Volume dan Selisih Biaya

Area (m²)	Volume Fill (m³)	Harga Satuan				
	Total Station					
6388	7257,13	Rp1.213.704.762				
	Drone					
6387,72 8095,88		Rp1.353.979.894				
Se	lisih Biaya	Rp140.275.132				

Tabel 7. AHSP Pekerjaan Pengukuran Total Station 6388 (sq.m)

No	Uraian	Satuan	Koefisien	Harga Satuan	Harga (Rp)
Tei	naga				
1	Kepala Tim Pengukura n	ОН	0.10	550,000.00	55,000.00
2	Surveyor	ОН	0.67	250,000.00	167,500.00
3	Juru Rambu	ОН	1.33	100,000.00	133,000.00

Politeknik Astra

No	Uraian	Satuan	Koefisien	Harga Satuan	Harga (Rp)
4	Tukang Babat Hutan	ОН	1.33	100,000.00	133,000.00
5	Olah dan Rekam data	ОН	0.67	675,000.00	452,250.00
				Sub Jumlah I	940,750.00
	BAHAN				
6	Total Station Sokkia CX 102	hr	0.22	750,000.00	165,000.00
7	Jalon pita ukur	hr	1.33	100,000.00	133,000.00
				Sub Jumlah II	298,000.00
				Total	1,238,750.00

Tabel 8. AHSP Pekerjaan Pengukuran Drone 6388 (sa m)

No.	Uraian	Satuan	Kuantita/ Koefisien	Harga Satuan	Harga (Rp)
Tenag	ga				
1	Kepala Tim Pengukuran	ОН	0.10	550,000.00	55,000.00
2	Asisten Survey	ОН	1.33	100,000.00	133,000.00
3	Olah dan Rekam data	ОН	0.67	675,000.00	452,250.00
				Sub Jumlah I	640,250.00
	BAHAN				
6	Drone DJI Phantom	hr	0.02	107,000,000.00	1,605,000.00
				Sub Jumlah II	1,605,000.00
				Total	2,245,250.00

Dari hasil perhitungan AHSP diatas, harga pekerjaan dengan metode manualmenggunakan total station dengan harga perhari Rp. 1,238,750.00 dikalikan dengan 2 hari yaitu Rp. 2,477,500.00. Sedangkan harga pekerjaan dengan metode fotogrametri menggunakan drone dengan harga per hari Rp. 2,245,250.00 dikalikan dengan 1 hari yaitu Rp. 2,245,250.00.

b. Waktu

Perhitungan waktu untuk pekerjaan manual disajikan pada tabel dibawah ini:

Tabel 9. Perhitungan Waktu

No	Deskripsi	Org	Waktu Pengambilan (Hari)	Waktu Pengolahan (Hari)	Luas Lahan (m²)
1	Manual	5	2	4	6388
2	Fotogrametri	2	1	1	6388
Deviasi		+3	+1	+3	

Dari hasil tabel 9, diperoleh deviasi waktu saat pengambilan dan pengolahan data dari metode manual dan fotogrametri. Dalam metode manual membutuhkan 5 orang dengan waktu pengambilan data 2 hari serta waktu pengolahan 4 hari pada lahan 6388 m². Sedangkan metode fotogrametri hanya membutuhkan 2 orang dengan waktu pengambilan data 1 hari dan waktu pengolahan 1 hari dengan luas lahan 6388 m². dihasilkan Deviasi vang menunjukan penggunaan fotogramnetri menguntungkan dari segi tenaga, waktu pengambilan data, dan waktu pengolahan data.

IV. KESIMPULAN

Berdasarkan hasil penelitian ini, penulis dapat mengambil kesimpulan sebagai berikut:

- 1. Proses pengambilan data manual dan fotogrametri melalui beberapa tahapan di mulai dari penentuan titik koordinat untuk total station dan membuat misi jalur untuk drone untuk mendapatkan data koordinat dan fotogrametri
- 2. Proses pengolahan data manual dan fotogrametri melalui beberapa tahapan dimulai dari import point dari total station dan juga import photo dari drone lalu di proses dalam software civil 3D dan di superimpose kan dalam 1 bidang, supaya dapat menghitung kebutuhan volume timbunan tanah.
- 3. Perbandingan volume antara metode manual dan fotogrametri sebesar Rp. 140.275.132 dan untuk selisih volume dari metode manual fotogrametri sebesar 838,75 m³
- 4. Penggunaan fotogrametri dalam penerapan skala industri menawarkan keunggulan dalam hal akurasi, efisiensi, pemantauan, dan analisis 3D. Meskipun memerlukan investasi awal yang signifikan dan terbatas oleh kondisi cuaca serta resolusi gambar, teknologi ini tetap menjadi pilihan menarik untuk memetakan area yang luas dengan tingkat akurasi yang tinggi dan memberikan wawasan yang berharga bagi perencanaan dan pemantauan dalam industri.

V. DAFTAR PUSTAKA

- [1] AS Ariyanto. (2021). Pemanfaatan Perangkat Lunak AutoCAD Civil 3D V. 2019 Sebagai Alat Bantu Perencanaan Grading.
- [2] Eisenbeiß, H. (2009). UAV photogrammetry.
- [3] Irvine, W. (1995). Penyigian untuk Konstruksi. Penerbit ITB.

Politeknik Astra

- [4] Kuncoro, W., Wakhid Agung Wibowo, N. M., & Nugroho, H. (n.d.). Studi Kasus : LPSE Universitas Diponegoro.
- [5] Pamungkas, Z., & Sartohadi, J. (n.d.). Kajian Stabilitas Lereng Kawasan Longsor di SUB-DAS BOMPON Kabupaten Magelang.
- [6] Sobatnu, F. (2018). Survei Terrestris. Deepublish.
- [7] Utomo, B. (n.d.). Drone Untuk Percepatan Pemetaan Bidang Tanah.
- [8] (Silaban, 2022). Optimasi Biaya Penggunaan Alat Berat Terhadap Pekerjaan Cut Dan Fill Dengan Metode Integer Linear Programming.
- [9] (Prasetyo, 2022) Perbandingan Metode Terestris Dengan Metode Fotogrametri Untuk Menghitung Volume Galian Dan Timbunan Tanah Proyek Rest Area KM 19 B Bekasi.
- [10] Setiawati, K., & Prasetyo, W. (2022). Analisa Pengukuran Volume Galian Timbunan Menggunakan Metode Fotogrametri Dan Terestris Pada Proyek Rest Area Km 19 B Bekasi.
- [11] Utomo, E., Hidayat, W., & Chandra, Y. (2022). Analisis Kombinasi Metode Pengukuran

- Terestrial Dan Fotogramteri Pada Penyusunan Master Plan Sekolah NU Kota Tarakan. Borneo Engineering: Jurnal Teknik Sipil, 6(3), 243-256.
- [12] Chairuddin, A., & Putro, H. (2023). Analisis Tingkat Ketelitian Penggunaan Foto Udara Format Kecil (FUFK) untuk Estimasi Perhitungan Volume Galian dan Timbunan.
- [13] LAKSANA, C. O. A. P. (2022). Pengembangan Dan Pemanfaatan Survei Pemotretan Udara Drone Multirotor Dengan Kamera Nonmetrik Menggunakan Program Open-Source Studi Kasus: Persiapan Quarry Di Pembangunan Bendungan Tugu Trenggalek.
- [14] Hasan, A. F. (2018). Perhitungan Volume Cut and Fill Pada Perencanaan Jalan Tol Km 28 Balikpapan-Samarinda.
- [15] Rahayu, L. P. (2015). Studi Perbandingan Perhitungan Volume Menggunakan Data Total Station Dengan Dan Tanpa Prisma. Institut Technology Sepuluh Nopember.